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Two similar problems are considered: what is the effect of applying a uniform and 
constant rate of strain (i) to the two-dimensional thermal mixing region in a homo- 
geneous grid-generated turbulent field, and (ii) to the two-dimensional velocity mixing 
region formed between two uniform streams moving with different mean velocities? 
The imposed strain field is orientated so as to compress or separate the isothermal and 
isokinetic surfaces in the plane of interest. 

Two theoretical models are presented; in the first, the profiles of temperature and 
velocity are assumed to be self-preserving and an assumption is made about the 
velocity scales; in the second, the statistical, rapid-distortion approach to dispersion 
due to Hunt & Mulhearn (1973) is applied. The circumstances in which these models 
differ and those where the simpler self-preserving model can be applied are deter- 
mined. The measurements presented here indicate that the widths of both mixing 
layers decrease within the strain field, the width of the thermal mixing layer decreasing 
at a greater rate than that of the velocity mixing layer. However, the measured length 
scales were found to be 5 yo larger than the scales predicted by either of the analyses, 
which differed from each other by 5 yo. It is suggested that selective amplification of 
the energy-containing eddies by the strain field is responsible. 

1. Introduction 
The application of a gross uniform strain to a turbulent flow is a problem of funda- 

mental interest. As a diagnostic device it can often reveal important aspects of the 
structure of the motion. For example, the investigations of Townsend (1954), Tucker 
& Reynolds (1968) and Marhchal (1972) on uniform and constant straining of homo- 
geneous turbulence have shed some light on the equilibrium structure which can be 
attained by a strained turbulent field, although the interpretations of the results are 
somewhat conflicting. I n  another flow situation, the experiments of Reynolds (1962) 
and Keffer (1965, 1967) on a two-dimensional wake have shown that some of the large 
entraining eddies in the outer regions of the flow may be amplified by a properly 
orientated strain field with the result that advection of quantities, such as turbulent 
energy, by a bulk convection mechanism is enhanced. 

The examination of strain applied to a contaminant field has received comparatively 
little attention. In  an early paper, Mills & Corrsin (1959) studied the effect of a 
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FIGURE 1. Schematic diagram of wind tunnel. 

contraction upon velocity and temperature fluctuations in a homogeneous turbulent 
flow generated by a warm grid. They found that the anisotropy in the temperature 
field resulted in an increase in the smearing or dissipation of the thermal fluctua- 
tions. 

In  the first investigation reported here we examine a more complex motion: the 
effect of a suddenly imposed, uniform rate of strain upon a contaminant mixing layer 
which is generated by a step change in temperature in a homogeneous turbulent flow. 
At sufficiently low levels of heat input, the buoyancy forces are small enough that the 
temperature can be considered a passive scalar quantity. 

In  the second investigation, we measure the effect of a strain field on the thickness 
of the turbulent shear layer between two uniform streams with low but significant 
turbulence levels. The details of the turbulence in the shear layers are not measured. It 
is found that the hypothesis of a self-preserving layer and an assumption about the 
velocity scale adequately describe the overall properties of the shear layer. 

Our f i s t  investigation is an example of turbulent diffusion in a uniformly distorted 
flow field. When changes occur ‘rapidly’, i.e. in a time small compared with the La- 
grangian time scale (or eddy ‘turnover’ time), a statistical theory for diffusion can be 
developed. We compare the new experimental results presented here with two theories, 
the first of which is based on the assumptions of a self-preserving form for the tem- 
perature in the mixing layer and constancy of the velocity scales in the layer, the second 
being the rapid-distortion theory for the turbulence allied to the diffusion theory of 
Hunt & Mulhearn (1973). This rather more complicated second theory shows that the 
self-preserving assumptions should be approximately valid, as indeed they are found 
to be. 

These flows are not only of intrinsic interest but can have a bearing on practical 
problems of turbulent dispersion of pollutants in the vicinity of obstacles (hills and 
buildings), inasmuch as the presence of an obstacle in an otherwise undisturbed flow 
field causes distortion of the flow field (Hunt 1973; Britter, Hunt & Puttock 1976). 

2. Experimental considerations 
The wind tunnel used in this experiment has been fully described elsewhere (Port- 

fors 1969). It is shown schematically in figure 1. It consists of an approach section 
0.46 x 0.23 m by 1.5 m long, a straining section (or distortion duct) 0.75 m long and a 
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FIQUFLE 3. Definition sketch for temperature mixing layers. 

recovery section 0.23 x 0.46 m by 0.75 m long. The cross-section dimensions are nomi- 
nal as allowance was made for boundary-layer growth. The distortion duct is of 
constant cross-sectional area, the posit,ions of the walls varying exponentially as 

?r = YcexPC-a(x-xc) l  = Y C B ,  (2.1a) 

z = z, exp [a(x - x,)]  = z,P-', ( 2 . l b )  

where the subscript c refers to conditions at the beginning of the distortion duct. The 
strain ratio is 2: 1 for this duct (i.e. the maximum value of p-' is 2*0), half that for the 
original duct of Townsend (1954) and much less than those for the McGill (Tucker & 
Reynolds 1968) and Grenoble (Marhchal 1972) ducts, which have strain ratios of 6: 1 
and 13.3: 1 )  respectively. The resulting mean velocity field is 

U = U, = constant, V = -ayU,, W = azU,, (2.2 a-c) 
16-2 
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Source and type of grid 

U, (ms-1) 
M (mm) 
Rod diameter, d (mm) 
R M  = U ~ M / V  
"LM 
(u',+/ul 
(Z/Z)+ 
(u'/,.)+ 
Longitudinal microscale, 

Transverse microscale, 

Transverse microscale, 

Longitudinal integral 
scale, L, (mm) 

Transrerse integral 
scale, L, (mm) 

Transverse integral 
scale, L,  (mm) 

Dissipation rate, 
E (m2 s-3) 

Kolmogorov scale, 

A" (mm) 

A" (mm) 

A* (mm) 

II (mm) - 
R, = ( U 2 ) + h U / V  

Comte-Bellot & 
Present, Corrsin (1971), 
parallel biplane, square 

round rods rods 

6.1 10.0 
25.4 25.4 

6.6 - 
10,300 17,000 
40 45 
0.0202 0.0205 
1.080 * 0.976 
1.070 0.976 

6.40 - 

4.56 3.55 

4.63 - 

15.68 - 

6-46 6.00 

6.42 

0.165 0.754 

0.380 0.260 

- 

37.40 48.60 

TABLE 1. Grid-flow properties. 

Van Atta & 
Chen (1969), 

biplane, round 
rods 

15.7 
25.4 
4.77 

25,600 
48 
0*0161 
1.130 
- 

3.04 

1.240 

0.230 
49-40 

Grant & 
Nisbet (1957), 
biplane, round 

rods 

6.3 
50.8 
9.53 

21,300 
30 
0.02 12 
1.132 
- 

where the constant a is 0.9094m-l. The mean velocities and turbulent intensities 
within the tunnel were checked experimentally using a Pitot-static tube in conjunc- 
tion with a micromanometer and a constant-temperature hot-wire anemometer, 
respectively. It was found that the velocity field was satisfactorily uniform with the 
exception of slight streamwise accelerations of the mean flow in the vicinity of the 
start and end of the distortion duct (figure 2). 

The step change in temperature was generated by electrically heating the upper half 
of a grid of parallel rods mounted in the wind tunnel to a uniform temperature and 
keeping the lower half of the grid at room temperature. The grid was constructed of 
6.6 mm diameter heating rods, with their centres 25.4 mm apart (mesh length 
ill = 25*4mm), and was located 55 mesh lengths upstream of the entrance to the 
distortion duct. The turbulent field produced by the grid rapidly diffused the initial 
step profile into the developed flow (figure 3) which was subsequently subjected to 
the uniform strain field. The mean velocity U, of the background flow was 6.1 ms-1 
and the maximum mean temperature difference Tl - T, across the flow was 8 "C. 
As Keffer, Olsen & Kawall (1977) point out, the buoyancy force resulting from the 
temperature difference across a thermal mixing layer will have a negligible effect 
on the dynamics of the flow if the ratio of the Grashof number to  the square 
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FIGURE 4. Normalized one-dimensional energy spectra of uz and va. 0, E,; 0, E,; - 9 E, 
calculated from E ,  using isotropic relation. 

of the Reynolds number (which represents the ratio of the buoyancy force to the 
inertial force) is very much less than unity. In  our present experiments, this 
ratio was of the order of 0.002. Thus the temperature field could be regarded as 
passive. 

Characteristics of the background grid flow at x / M  = 40 are reported in table 1. 
These were determined by means of constant-temperature hot-wire anemometry in 
conjunction with digital data processing. For comparison, grid-flow properties ob- 
tained by a number of other investigators are also given in table 1. It should be men- 
tioned that the correlation coefficients 

were found to be essentially zero (less than 1 yo) along the centre-line of the tunnel, 
as they should be, for reasons of symmetry. Figures 4,5  and 6 show the one-dimensional 
spectra El,(kl) ,  E,(k,) and E,(E,) of the longitudinal and transverse components 
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calculated from E ,  using isotropic relation. 
FIGURE 5. Normalized one-dimensional energy spectra of u2 and w2. 0, E,; 0, E w ;  - t Ew 

-- 
G , v 2  and 2 of the turbulent energy at x / M  = 40, together with values of Ev(kl) and 
E,(L,) calculated from E,(k,) using the isotropic relation 

It is evident from these figures that the grid turbulence was approximately isotropic 
for wavenumbers greater than about 0.05 mm-1, the departure from isotropy becoming 
more pronounced as the wavenumber approached zero. Thus it is not surprising that 
the ratio of the longitudinal integral scale to the transverse integral scale deviated from 
2-0 (see table 1), the value necessary for complete isotropy, as the integral scales are 
strongly dependent on the low wavenumber structure of the turbulence (i.e. the large 
eddies). We note that the agreement between our measured and calculated E ,  spectra 
is roughly the same as that found by Van Atta & Chen (1969) over the same wave- 
number range ( -  0.05 mm-' < k, < N 2.0mm-'). 

The velocity mixing layer was created by placing a fine mesh screen over the lower 
half of the unheated grid. No splitter plate was used. Nevertheless a step change in 
velocity was generated and the intense shear at the surface of discontinuity caused 
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FIGURE 7. Definition sketch for velocity mixing layer. 

rapid subsequent diffusion.? Hence the flow profile quickly evolved into the developed 
mixing layer (figure 7). This was then subjected to a uniform strain field. The velocity 
of the upper stream was U, = 7.6 ms-1 and that of the lower stream U. = 4-3 ms-l. 

t It may be conjectured that, as the strength of the turbulence outside the shear layer was 
such that (u2)*/( V ,  - U,) = 0.045, the coherence of the large structures in the mixing (or sheer) 
layer was probably reduced quite significantly. 

- 
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The spreading of the mixing layers was studied as they developed in the streamwise 

direction. Measurements of mean temperatures and veIocities were made in the pre- 
strain and post-strain sections of the tunnel as well as in the distortion duct. Tem- 
perature levels were determined by means of a copper-constantan thermocouple and 
velocities by means of a Pitot-static tube in conjunction with a micromanometer. 

3. Analysis of the flow 
Velocity mixing layer 

The transverse spreading of unstrained mixing layers will be governed by the back- 
ground turbulence and the mean shear. In  the case of uniformly strained flows, the 
spreading will also be governed by the imposed strain field, which, because of its 
orientation with respect to the flows (i.e. streamlines converging in the x, y plane), 
should tend to inhibit the spreading. If  sufficient development of a shear flow has 
taken place,? the distribution of mean flow quantities will be self-similar and charac- 
teristic intensity and length scales can be determined from these distributions to 
collapse the data. Also, the functional dependence of the scales upon the streamwise 
co-ordinate can be predicted from a self-preserving analysis based on the equations of 
mean motion. However, the solutions contain arbitrary constants, and although these 
can sometimes (as in wakes) be determined by integral constraints this cannot be done 
in this case. 

Townsend (1976) has shown that the self-preserving intensity and length scales for a 
simple (i.e. undistorted) velocity mixing layer are given respectively by 

u, = constant, 1, = C(x-x,), (3.1), (3.2) 

where uo can be taken as the velocity difference Ul- U2 between the undisturbed 
adjacent streams, 1, is proportional to the width of the layer, C is a constant and x ,  is 
some suitable virtual origin for the flow. C and xo are obtained from experiments. The 
turbulence adjusts itself to the local values of u, and 1,; so (G)* is proportional to u, and 
L,, the Lagrangian integral scale, is proportional to I , .  

We assume that u, is approximately constant even in the distortion; then the 
analysis in appendix A shows that the length scaIe is given by 

for x1 < x < x2 (non-uniform straining) and by 

1,/M = (C/a*)  [(a*C, - I )  exp ( - a*r2) + 1-01 (3.4) 

for x > x2 (in the uniform-straining section), where yo  = (x8 - xl)/M, rl = (x - x l ) / M ,  
r2 = (x -x2)/M and a* = aM. The constant C, is given in terms of C by 

C,, = exp ( - &*r,) exp ( t2)  dt + - 

t This implies that the flow is developing over a time scale large compared with the Lagran- 
gian time scale 71 N L,/(G)* N lo/(z)6. The essential principle of self-preserving flows is that 
the conditions a t  the initiation of the flow are largely irrelevant and that the flow is governed 
by a moving equilibrium (Townsend 1976, p. 196). 
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Thermal mixing layer 
NOW consider the growth of a thermal mixing lajer placed in a turbulent flow charac- 
terized by a local turbulent velocity u; and an integral scale L, (see figure 3). The 
turbulence is not related to the dimensions of the mixing layer; it  decays and is dis- 
torted by the duct quite independently of the mixing layer. Therefore it is not evident 
at first that a self-preserving solution is appropriate. However, for the same reason that 
the temperature downstream of a heated wire in a turbulent flow exhibits a self- 
similar profile, we expect that in a uniform turbulent flow the temperature profile in 
the mixing layer will be self-similar. When x < L,(g/u;) (i.e. travel times small com- 
pared with the Lagrangian or eddy time scale) the explanation for the self-similarity 
is based on the normality of the joint probability distributions for the turbulent 
velocities (Batchelor & Townsend 1956). 

In  the analysis described in appendix A we advance the two hypotheses that, even 
in turbulent flow where ui and L, vary along the streamwise direction, (i) the tempera- 
ture profiles remain self-similar and (ii) the variations in u; and L, have insignificant 
effects compared with the straining of the mean flow by the contraction, if the straining 
is suificiently strong. In other words the convergence of the mean streamlines 
dominates the dispersion, On the basis of these hypotheses we deduce expressions for 
the thickness 1, of the thermal mixing layer, in the two distinct sections of the flow. 
In  the pre-distortion section, 1, increases linearly, i.e. 

1, = Wx-x,,), (3.5~) 

xoo being a virtual origin for the thermal layer and K being a constant. AS the flow 
enters the converging section, the slight non-uniform distortion in the region 
x1 < x < x2 produces a change in 1, given by 

2r0 $ r l ( a * / z d *  
1,/M = K exp ( - a*r2,/2r0) [ (2) S, exp ( t2 )  dt + ~ x1 kXe0] , (3.5 b )  

and in the uniform-distortion section ( x  > x2) ,  

where 
l,/M = (K/a*)  [(a*K, - 1) exp ( - a*r2) + 1.01, ( 3 . 6 ~ )  

[ (3)' exp (t2) dt + 1 M -xeO1 KO = exp [ - +(a*r,)] (3 .6b )  

K is a constant which is fixed by comparison with the experimental results in the 
pre-strain section. 

Note that the mixing-layer thicknesses 1, and I ,  increase linearly in the pre-strain 
region, in the first case owing to the self-generated turbulence of the shear layer and in 
the second case owing to the uniform turbulence across the thermal layer. In  the con- 
verging section both lo and lo decrease; the converging streamlines reduce the spreading 
of the two mixing layers. The theory does not indicate how strong the contraction 
must be for the natural growth of 1, and I ,  due to the turbulence to be reversed by this 
mean-streamline effect. However a more complicated statistical theory, based on 
rapid-distortion ideas, can answer this question. 

The development of the thermal mixing layer may be analysed in terms of the 
turbulent diffusion theory of Hunt & Mulhearn (1973). This theory calculates the 
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diffusive spread for a point source in terms of the Lagrangian velocity correlations; 
and these are in turn found from the theory of homogeneous rapid distortion of 
Batchelor & Proudman (1954). Suppose that the diffusive spread for a point source a t  
the grid is a ( x )  in the y direction, so that u 2 ( x )  is the variance ofthe plume width. Since 
the turbulence probability distribution in a homogeneous flow is approximately 
Gaussian it is reasonable to assume that the concentration of contaminant from a point 
source is normally distributed, and so in a vertical plane Oxy  along the centre of the 
wind tunnel the temperature due to a point source is 

(3.7) T = [T , / (2na2(x) )*]  exp ( - ( y  - Y ) / 2 a 2 ( x ) ) .  

The plume described above is centred on y = Y ( x )  and Y depends on the convection 
by the mean flow, with y = Y ( 0 )  initially. When x < LziZ/ui, cr(x) = [(v2)4/iZ]x 
(Monin & Yaglom 1971, chap. 5), and the heated grid may then be regarded as a 
superposition of independent point sources with 

T y > O  
Y < O  T = ( o p 9  

] a t  x =  0. 

This leads to an overall temperature profile T ( x ,  y) given by 

where Q ( x )  is a weighted source distribution allowing for the convergence of stream- 
lines in the straining section. Thus the temperature profile should be given by the 
error function. It also follows that, for the definition of the mixing-layer thickness 
given in appendix A, 

1, = 2+56a(x ) .  

Hence a knowledge of the diffusion of a point source will give the behaviour of le as 
well. One feature of this statistical result is that the temperature profile is self-similar, 
even though the turbulence is not in equilibrium. The cause is the Gaussian nature of 
the turbulent velocity. 

The result for 1, is not altered if the centre of the straining motion and the centre of 
the mixing layer do not coincide. Also, if there is any three-dimensional structure with 
variation in the z direction this will only produce a scaling factor in the temperature 
profile without altering le. 

Consider now the motion of a single particle released into the turbulent flow prior 
to the initiation of the strain and in particular the y co-ordinate of its position. For 
a particle a t  x = X ( t )  

_ -  - V ( X ( t > ,  t )  + V(X(t) ,  t ) ,  (3.10) 
d Y  
at 

where v(x,t) is the Eulerian velocity fluctuation. The mean velocity given in (2 .2 )  
shows that the mean velocity normal to the mean streamline through the source in the 
Oxy  plane is 

V = -a ( t ) yU, .  (3.11) 
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Hence 
d Y / d t  = - a( t )  YU1+ v(X(t) ,  t ) .  (3.12) 

Following Hunt & Mulhearn (1973), the fluctuating velocity component is expanded 
as a Taylor series about its value a t  z(t), where z(t) is the mean position of the particle 
at time t on the mean streamline through the source: 

d Y / d t  = - ~ ( t )  YUl+v(X( t ) , t )+O[(X i -X i )  8~/tkilz(t>,~]. (3.13) 

The last term of this equation may be estimated in terms of the turbulence as 

O(1e u;/L,) 

where lo is a scale of the diffusive spread, u; a scale of turbulent velocity fluctuation and 
L, the longitudinal integral length scale. This term is negligibly small if, within the 
straining section, the following sufficient conditions are satisfied: 

u;/(aUi L,) ( t/7l;) < 1, &/LX 4 1, 

where T~ = LJu; is the Lagrangian time scale of the turbulence. These conditions 
indicate that diffusive spread must be small compared with the integral scale and that 
the theory applies to the initial stages of diffusion where the statistics of the particle 
motion are still well correlated. The first condition is also the requirement for the rapid- 
distortion theory of Batchelor & Proudman (1954) to be applicable. 

The equation for d Y / d t  may be averaged: 

dF/dt  = -a( t )  U1 F+O(leui/L,), 
which has the solution 

where 
F ( t )  = F(O)exp ( - A ( t )  U,), 

A(t) /= U(7)dT  = S(X)/U, ( x  = Ult) , It: 
and t ,  is the instant at which the strain is initiated. 

Similarly, 
X ( t )  = U,t, Z ( t )  = Z(0)exp ( - A ( T )  U.J. 

If v( t )  is defined as v( t )  = v ( x ( t ) ,  t )  then the equation for Y - F is 

d(  Y - H(t))/dt = - ~ ( t )  U,( Y - F) ( t )  + v(t), 

which has the solution 

Y -  F ( t )  = exp(-A(t)Ul)/;d7[exp(A(7)Ul)v(7)], 

so that 

( Y ( t )  - F(t))2 = ~2 = exp ( - 2A(t) U,) 

(3.14) 

(3.15) 

( 3 . W t  

(3.17) 

x /:d7'[:dr" [exp (A(7') Ul+A(7") U,) v ( ~ ' ) v ( 7 ~ ~ ) ] .  ( 3 . 1 8 ~ )  

t Note that this is formally identical to equations (A 6) and (A 17), in appendix A, which have 
been obtained by the self-preserving theory. 
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(3.18b) 

As x ( t )  = 7.7, t ,  cl may equivalently be regarded as a function of time or of position 
downstream in the wind tunnel. The exponential factors in the integral for cl represent 
the effect of mean-streamline convergence in they direction, produced in the straining 
section, and show how this convergence slows down the rate of diffusive spread or even 
reduces the plume width despite the turbulence. The Lagrangian autocorrelations 
v(tl) v( t z )  are found from rapid-distortion theory, and the details are given in appendix 
B. It also follows from the result for F( t )  that the weighting function &(x), defined in 
(3.9), is 

&(z) = exp ( A ( t )  U,), where t = x/U,. 

The theory can show what happens if the straining is large and negative. This means 
that the streamlines diverge and that a < 0 and la1 lo, UJu’ = C 4 1, where I,, is the 
value of lo at the beginning of the distortion, where z = x1 and t = t,. Then in (3.16) the 
term due to the divergence of the streamlines dominates and we find that as C -+GO 

Y - F -  (Y-P)(z=x, )exp  (3.19) 

so that 

This result is the same as that of the self-preserving analysis, i.e. (3.5) and (3.6). 

the straining is large and positive. Then (3.18) shows that, when aU,t S 1 ,  
Another interesting comparison with the self-preserving solution can be made when 

(3.20) 

Since a strong contraction in the y direction and a divergence in the z direction lead to 
amplification of 7, this means that 1, increases with time in this limit (always assuming 
that t < 7L).  This disagrees with the self-similar solution (3.6a),  which has the asymp- 
totic limit that lo tends to a constant (K/a*) .  This is more likely to be the correct limit 
when t 9 7L. 

Consider the thermal hyer with small strains. It follows from (3.17) that the distor- 
tion 

Thus at  the beginning of the distortion (t  = t l )  

where 

Therefore if the convergence is weak enough that 

(3.22) 
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FIGURE 8. The calculated widths of bhermal layers in a distorting duct, either diverging or 
converging, with various strengths of convergence and/or turbulence intensity, as defined by C. 
I, C = 1.25, a < 0;  11, C = 0.5, a > 0; 111, C = 1.0, a > 0; IV, C = 2.0, a > 0; V, C = 3.0, 
a > 0. ---, asymptotic thickness of the thermal layer as predicted by a self-preserving solution. 

then the widening of the thermal layer produced by the turbulence overcomes the 
tendency of the converging streamlines to reduce the thickness. The assumption of the 
self-preserving solution is that the latter effect is the stronger. So a necessary 
condition for the self-preserving solution to hold is the converse of (3.22), i.e. C > 1 .  

The general results of this analysis are demonstrated in figure 8 in form of a graph of 
lellel as a function of ( t  - t l )  (a (  U,. Note in figure 8 how when C. = 3.0 the thickness of 
the layer first decreases, before eventually increasing. Our asymptotic result (3.20) 
shows that, however large I: is, eventually lo will start increasing again. Asymptotically 
when C 9 1, this increase starts (i.e. dcrzldt = 0) when 

aU,(t - t , )  cc In C. (3.23) 

4. Experimental results and discussion 
Thermal mixing layer 

The dimensionless distributions of mean temperature across the thermal mixing 
layer prior to, within and after the strain field are shown in figure 9. The data were 
rendered dimensionless by the local characteristic intensity and length scales. It, is 



478 J .  F .  Keffer, J .  G .  Kawall, J .  C .  R .  Hunt and M .  R. Maxey 

2.0 

I .o 

2 0  

B 
P 
1 

& 

0 
8 

. 
I 

9 
-2.0 ' 1 I 

0 0.5 1 .o 1.5 

h ( t l s )  
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seen that there is no functional change in the mean profiles in either the uniform or the 
distorted region of the flow, i.e.f(q) is a universal function. 

The variation of the thermal length scale le with streamwise distance is depicted in 
figure 10. In  the pre-strain region of the flow, the measured length scale increases 
linearly with increasing streamwise distance, meeting the self-preserving require- 
ments. It may be remarked that Watt (1967) and Keffer et al. (1977) also found, for 
similar experimental realizations, that 1, increases linearly with x .  The present pre- 
strain data are closely approximated by 

(4.1) lo/M = O.O22x/M + 1.65. 

From this, and using the values of x, /M and x2 /M of 47 and 57, respectively, which 
were chosen on the basis of the variation of the background mean velocity U, along 
the tunnel axis (figure 2 ) ,  we obtained the following predicted scales for the distorted 
flow : 

= exp ( -  0.01 155r;) [ 0.65 
0.034rl sn exp 

( t 2 )  dt + 
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for 0 < rl < 10.0 (non-uniform straining), where rl = x / M  - 47.0, and 

Z8/M = 1.643 exp ( -  0.0231r2) + 0.955 

for 28.0 > r2 > 0 (uniform straining), where r2 = x / M -  57.0. 
As can be seen from figure 10, the behaviour of Z8 in the region of non-uniform 

straining is adequately modelled. The results for the region of uniform straining 
indicate that the width of the layer decreases, as expected from the theory, but at a 
rate somewhat less than that predicted, i.e. the measured scales are greater than the 
predicted ones throughout this region, the deviations increasing with increasing 
streamwise distance. It should be pointed out that the predicted curve is not appli- 
cable near the end of the distortion duct since the uniform strain field does not extend 
that far (see figure 2). In the post-strain region, the results show that the width of the 
mixing layer again increases linearly with increasing streamwise distance as expected. 
We note that the spreading rate in this region is slightly smaller than that in the pre- 
strain region. 

The experimental results for the thermal length scale 10 may also be compared with 
the results of the rapid-distortion analysis of $3. First, the dimensionless temperature 
distribution shown in figure 9 demonstrates the self-similar form assumed in the analy- 
sis and shows that the profile is governed by the length scale 10. Furthermore the 
dimensionless profile represents accurately the error-function profile, derived by 
superposing a continuous distribution of point sources each of which produces a 
Gaussian temperature distribution. 



480 J. F .  Keffer, J .  G. Kawall, J .  C .  R. Hunt and M .  R. Maxey 

During the pre-strain phase, assuming no dissipation in the rapid distortion of the 
turbulence gives 

so that from (3 .18b)  
v(tJv(t2) = T, 

&(X)/M2 = (@/ U l )  ( x / M  + xo/M)? 

Comparing this with (4.1) shows that 1, = 2*56a(x). 
The finite apparent scale for 10, a t  x / M  = 0, is due to the heated grid system, and 

there is an effective origin for the mixing layer a t  x = -zoo, where in this instance 
xBO/M = 75. The values of G / U t  and of the virtual-source position derived for the 
initial development may be used to set the parameters in the expressions for ~ ( x )  and 
so test the theory for the later stages. Altering the value of the turbulence intensity in 
the pre-strain phase produces only a scaling factor in the result for 1,. Varying the 
virtual-source position alters the distance over which the turbulence statistics remain 
well correlated, since without dissipation or straining rapid-distortion theory does 
not allow for any decorrelation. The effect of the straining motion is generally to 
increase the intensity v", but the convergence of mean-flow streamlines acts as a 
decorrelating agent giving more weight to the recent history of the turbulence. So 
moving the virtual source back enhances the effect of streamline convergence. 

The values of I ,  predicted by the rapid-distortion analysis using the pre-strain data 
are shown in figure 10. Allowance has been made for non-uniform straining initially, 
as noted previously, and the values of 10 in the post-strain region have been calculated 
on the basis that the large eddies retain their overall strain after leaving the straining 
section. The results based on rapid-distortion theory are in good agreement with the 
observations, and also illustrate the recovery of the diffusion process after the flow 
leaves the straining section. However during the straining 18 is underestimated slightly 
and, in the post-strain region, its predicted growth is too rapid. The latter is due to an 
overestimate of the intensity 3 by rapid-distortion theory. During the straining, the 
value of 3 is not so important, as the results are dominated by the convergence of 
mean-flow streamlines, which produces the reduction in le. But this is no longer so in 
the post-strain region, and the increased value of 2 is important. 

Note that for these experiments the parameter E, which is a measure of the import- 
ance of straining relative to turbulent diffusion, is given by 

1,(x = x ~ )  uU, 2.8 x 0.0254 x 0.9 
0.02 

2i 3.2. - - x =  
u; 

Therefore X > 1 and the straining dominates, which is why the self-preserving solu- 
tion proves reasonably satisfactory. We also note that the time t ,  - t ,  required to pass 
through the distortion region is such that (t, - t l )  aU, = 0.254 x 30 x 0.9 fi 0.7, so that 
(tz-tl)aUl < 1.6, which is a necessary condition for dleldx to be negative in the 
contraction (see Fj 3 and figure 8). 

It is interesting that the thermal field responds so quickly after being released from 
the strain field. Measurements by Grant (1958) on a uniformly strained, grid-generated 
turbulent field suggested that the time scale for the recovery of the turbulence was of 
the same order as the characteristic decay time for the intensity fluctuations and con- 
sequently the approach to pre-strain isotropy was slow. It can be seen from figure 11,  
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FIQURE 1 

which shows the variation of the turbulence intensities of the convecting flow along 
the centre-line of the tunnel, plotted as inverse ratios U:/G etc., that this is also 
the case in the present situation. It may be remarked that Tucker & Reynolds (1968) 
found that their flow field rapidly bccame less anisotropic upon being released from the 
strain field. The reason for this rather different response is unexplained. 

As can be seen from figure 1 1,  the component of intensity 3 increases slightly with 
straining and its overall decay is less than that of the other components. Physically 
this is due to the stretching of vortex line elements in the z direction; and the reduction 
in 3 is caused by the contraction of elements in the y direction. A comparison of these 
results with the predictions of 3 from rapid-distortion theory is given in figure 12. 
One estimate with no dissipation, as given by Batchelor & Proudman (1954), and one 
with an overall decay factor, as suggested by Ribner & Tucker (1952), are included. 

The decay factor, based on initial data and the intensities a t  x / M  = 40 given in 
table 1, is assumed to be 

v2/U!  = 100(x/M- 13)-l[7/U21], 

where [G/U?],, is the calculated intensity without decay. Even so we find that the value 
of U"/U! is too large. The rapid distortion produces components with large wave- 
number, which are no longer within the range of the energy-containing eddies and 
would be dissipated rapidly. The lack of viscous decay and inertial transfer in the 
theory means that the anisotropy produced is overestimated. 

The ability of the rapid-distortion approach to give the behaviour of the thermal 
mixing layer itself poses some questions, since u'/(aU, L,) - 1.4 and &/LZ - 1.5, 

- 



482 J .  F .  Kefler, J .  G .  Kawall, J .  C. R. Hunt and M .  R. Maxey 

40 50 60 70 80 90 
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v, M 

FIGURE 12. Comparison of calculations and observations of the distortion of the component 
v2 of turbulence intensity. -, observations; ---, rapid distortion with decay; - . - * -  , rapid 
distortion without decay. 

- 

which satisfy neither zL’/(aU, L,) 4 1 nor lo/Lz < 1. Also the initial growth of le is 
linear with distance downstream, consistent with short-time-scale diffusion in a field 
of constant intensity, whilst from figure 12 i t  can be seen that the total turbulent 
intensity is decaying appreciably. From the linear growth of 16 an effective turbulent 
intensity may be estimated: 

(.5/U:)$f = 0.0086, 

which, compared with the intensity a t  x / M  = 40 of 0.0202, shows that only 15% 
of the total turbulent energy is effective in this diffusion process. This suggests that 
diffusion in this case is governed by large permanent eddies of the type discussed by 
Batchelor (1953, p. 80), which remain well-correlated motions for a long time. These 
would in turn be strongly influenced by the method of generation of the turbulence a t  
the grid. It would appear that  the processes of turbulence generation and marking of 
the Aow by heating at the grid are very complicated. 

Velocity mixing layer 

The dimensionless measured velocity profiles in the velocity mixing layer are plotted 
in figure 13. A comparison of figures 9 and 13 shows that f(7) = h(7e). This is not sur- 
prising since these functions satisfy formally identical equations and have the same 
boundary conditions. The variation of the velocity length scale 1, with streamwise 
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FIGURE 13. Mean velocity distributions. 0, z / M  = 30; 0, 45; A, 60; m, 75; 0 ,  90; A, 105. 

distance is presented in figure 14. Within the pre-strain region, lo, like lo, increases 
linearly with increasing streamwise distance, as predicted. It is noted that a Iinear 
behaviour of lo in an unstrained region was also found by Watt (1967) and by Wyg- 
nanski & Fiedler (1970). The present pre-strain data conform to the relation 

l0/M = O*O~OX/M + 0.80, 

from which the predicted scales in the strained regions were found to be 

1 l , /M = exp ( -  0.001 155-2,) [ 1.177 ~oo'034r'eup ( t 2 )  dt + 2.68 

for 0-0 < rl < 10.0 (non-uniform straining) and 

Z,/M = 1.031 exp ( -  0.0231r2) + 1.732, 

for 28.0 2 r2 2 0.0 (uniform straining). 
Again, as in the case of the thermal mixing layer, the measured scales are well 

approximated by the values predicted by theory based on self-preserving profiles for 
the non-uniformly strained region ; they are somewhat larger than the values predicted 



2 0 -  / I I 
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within the uniform strain field and they display a linear behaviour in the post-strain 
region in accordance with the self-preserving theory. Unlike the thermal mixing layer, 
howexrer, the velocity mixing layer expands at a noticeably greater rate in the post- 
strain region than it does in the pre-strain region. 

The departure of 1, from the predicted self-preserving form within the uniform- 
strainingregion is attributed also to the effect of the strain field on the turbulence. The 
lateral momentum transport t,erm G, upon whose behaviour I ,  depends, will respond 
to the strain in much the same manner as a, so that, in view of the behaviour of the 
components 2 and v2 of the grid turbulence within the distortion (figure 12), we 
should expect Z,, to be slightly larger than is predicted. This is consistent with the 
experiments carried out on the strained wake (Keffer 1965), which demonstrated that 
the existence of self-preserving solutions to the equations of motion is not a sufficient 
condition for realization in practice.? 

From a comparison of figures 10 and 14, it can be seen that the spreading rate of the 
unstrained velocity mixing layer is roughly 80 % greater than that of the corresponding 
thermal layer, whereas for the uniformly strained flows, the spreading rate of the 
thermal layer is about 65 yo greater than that of the velocity layer. This is consistent 
with the fact that turbulent diffusion will be significantly greater in a flow having large 
lateral gradients of streamwise mean velocity (i.e. large mean-flow shear) than in a 
grid-generated turbulent flow. (Typically the turbulence intensities are in the ratio 
0.1 to 0.02.) 

We note that, for a combined thermal-velocity mixing layer, the widths of the 
t Further measurements and a comparison of the measurements with rapid-distortion theory 

1iavo recently been completed by Elliott (1976). 

/ I  I I I I I I I I .  
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thermal and velocity fields should be identical a t  all streamwise locations, as has been 
found for the heated two-dimensional turbulent jet by Davies, Keffer & Baines (1975). 

The authors would like to thank R.  G. Blumenauer, who caried out the experiments 
on the thermal mixing layer. This research was supported by the National Research 
Council of Canada under Grant number A-2746. M. Maxey acknowledges the support 
of a Science Research Council postgraduate studentship. 

Appendix A. Self-preserving solutions 
In  the experimental modelling of a uniformly strained mixing layer, it is not possible 

to initiate the strain field instantaneously. In the analysis which follows, we therefore 
assume that a gradual straining begins at  x1 < xc (x, being the nominal distance to the 
start of the distortion duct) and extends to x2 > x,, and that uniform straining is 
initiated at x2 .  Furthermore, we assume that the mixing layer is in a self-preserving 
state before i t  is strained. 

The equation of mean motion for the steady incompressible flow of a velocity mixing 
layer along the central plane of a distortion duct can be approximated as 

-ai7 -ai7 a% u-+ v-+- = o ,  ax ay ay 

where viscous and normal-stress terms, being of second order, are ignored and 

dS - v = -- (x)yU 
dx 

S(x) is a strain function such that 

= 0 for x < xl, 
> 0 for x2 > x > xl, 
= a(x-x*) for x > z2, 

S(x) [ 
where a is the strain constant for uniform straining and x* = Q(x+x2). Following 
Reynolds (1962), we assume a parabolic variation for S(z) in the region x2 > x > xl, 
i.e. 

S ( x )  = A(z-B)2 .  

Since the variation of S(x) is continuous, it  follows that A = a/2(z2 - xl) and B = xl, 
so that 

We introduce universal functionsf(7) and g ( 7 )  as follows: 

X(x) = a ( x - 2 , ) 2 / 2 ( ~ ~ - - ~ ~ )  for x2 > x > xl. (A 1) 

and 

where u, is the characteristic intensity scale of the flow and 7 = (y-yo5)/Zo(x) is the 
dimensionless lateral co-ordinate, yo.5 being the lateral distance between the maximum 
and half-maximum mean velocity points and 1, the characteritic length scale of the 
flow. 1, is taken to be the lateral distance between the 90 and 10% maximum mean 
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velocity points, i.e. I ,  = yos-yol. Substitution of (A 2) and (A 3) into the governing 
equation yields 

where the prime denotes differentiation with respect to 7. Self-preservation requires 
that the coefficients of the universal functions and their derivatives be constant or 
zero. Thus 

u, = constant (A 6 )  
and 

dl, dS - + - I, = constant = 17,. ax ax 

It is convenient to equate u, to the velocity difference between the free streams of the 
mixing layer, i.e. u, = U, - U,. Solving (A 6) in the region x,  > x > x1 gives 

I ,  = I,, = C, exp [ - S ( x ) ]  exp [S(x')]  dx' + C, . (A 7) [ sz: 1 
Since I,(x) is continuous at x1 

Iol(xl) = lg(x,), where I$ = C ( x  - x,), 

which is the characteristic length scale for the undistorted flow. C and xo are constants. 
Consequently C, = (C/C,) (x ,  -xo) ,  and substituting (A 1) into (A 7) yields 

Zol=C,exp(-ar/ 2r,){(~)'~~)*exp(t~)dt+-(xl- ic c1 x , )) , (As )  

where r = x - x1 and ro = 2, - x,. Also, I , ,  must satisfy the following condition: 

lim I,, = It , 
ah0 

whence C, = C .  
In  the region x > x,, we obtain from (A 6)  

1 Z, = I,, = ~ i e x p  [ - ~ ( x ) ]  [ SXexp [ ~ ( x ' ) ]  dx' + CL , 
Xa 

l,,(x = X L )  = ZOl(X = X L ) ,  

so that from (A 8) and (A 9), since Z,(x) is continuous at x = xL, 

where 
C; Ci exp [ - a(x2 - x*)]  = CC,,, 

exp ( t 2 )  dt + x1 - x,  = constant 

I, ,  = C'a-l{ 1 - exp [ - a ( x  - x, ) ] }  + CC, exp [ - a(x  - xr) ] .  

(a + 0). 1 C, = exp ( - &ro) [ (%$/o(4a9.0)* 

Hence 

Since I , ,  must satisfy the condition liml,, = l$, we find C' = C. Thus, for x > x,, 
a-0 

I ,  = Ca-l{ 1 + (aC, - 1) exp [ - a(x - x,)]) .  (A 10) 

It should be noted that the constants in (A 10) can be determined once 15 is known. 
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For the thermal mixing layer, we follow a development parallel to that for the 
velocity mixing layer. The general two-dimensional heat-transfer equation, when 
molecular conduction and streamwise variation of the longitudinal heat-transport 
term are negligible, is 

-a@ -ao a 2  u-+v-+- = 0. 
ax ay ay 

Along the central plane of a distorting duct, and in the absence of a velocity shear 
flow, this takes the special form 

where U' is the mean velocity of the convecting flow and is constant. We introduce 
universal functions h(7') andj(7,) corresponding to (A 2) and (A 3): 

and 

where 8, is the characteristic thermal intensity scale, 7' = ( y  - ~ ~ . ~ ) / l ~ ( x )  is the thermal 
equivalent of 7, le  being the characteristic thermal length scale for the flow, and uo is the 
characteristic velocity intensity scale, which is taken as constant (and can be taken as 
G). This implies small variations in and a strong contraction. In  view of the bound- 
ary condition 

O(x,y = co) = On, = constant, 

where 0, is the maximum (mean) temperature difference across the flow, it follows 
that 8, = constant. Here we take 0, to be equal to 0,. Substitution of (A 13) and 
(A 14) into (A 12) gives 

This reduces to 

For self-preservation of the flow to be possible, it  is necessary that 

dl' dS - +- 1 - constant = K,, 
dx dx '- 

from which, in the region x2 > x > xl,  

20 = lol = K ,  exp [ - S(x)]  exp [S(x')] dx' + K ,  . 1 
Application of the condition l'lIz=x, = l ~ l x = x l ,  where 1; = K(x-xoo) ,  which is the 
characteristic thermal length scale for the undistorted mixing layer and in which K 
and x'o are constants, gives 

K ,  = ( K / K A  ( 2 1  -xed. 
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Also, application of the condition liml,, = 1; gives K ,  = K .  Thus for x, > x > x,, 
a+O 

using (A l ) ,  

lo = Kexp ( -ar2/2ro) exp ( t2 )  dt + (xl - xeo) 

Similarly, for the region x > x2, we obtain from (A 17) 

where 
lo = Ka-  1{1+ (aK,- 1 )  exp [ - a(x - x,)]}, (A 19) 

~~ 

exp ( t2 )  dt + (xl - xeo) = constant (a  9 0). 1 KO = exp ( - hayo)  

Appendix B. Homogeneous rapid distortion 
The method of rapid strain distortion and the assumptions involved are sum- 

marized by Townsend (1976, § 3.10). The nonlinear terms and the viscous terms in the 
equations for the fluctuating velocities are neglected, on the assumption that 

u’/(aU,L,) < 1 and v/(aV,L:) < 1, 

where v is the kinematic viscosity. From the values of the turbulent intensity at  
x / M  = 40, given in table 1, u’/(aUIL,) N 1.4 and v/(aUlL2) N 1.7 x 10-3. The neglect 
of the nonlinear terms is thus not strictly justified. The reduced equations are 

aui/at + iq aui/axi + uj aqlax, = - ap/axi, 
aui/axi = 0, 

where p is the kinematic pressure, i.e. pressure divided by density. 

defined by 

where A(t )  = S(x) /  U ,  and by the usual total strains, which in this case are 

e ,  = exp ( - A ( t )  Ul), 

The effect of mean-flow convection is accounted for by a change of co-ordinates, 

X = x - U l t ,  Y = yexp(A(t)U,), 2 = zexp(-A(t)Ul), 

el = 1, e3 = exp (A(t)  Ul). 

The resulting vorticity fluctuations are then given by 

w , ( X ,  Y,Z,t) = eiw,(X,  Y,Z,O), i = 1,2 ,3 .  

Fourier components of the velocity fluctuations in the new co-ordinate system may be 
defined in terms of distributions or generalized functions, with 

u,(X, t) = exp (i k .  x) a,(k, t) d3k, 

where the ai(K, t)  are the Fourier components, k being the wavenumber vector. These 
components are distorted by the straining motion: 

a,@, t )  = x-2((k: e3/e2 + k; e2/e3)  a,(k 0) 
+ [ - ki k21 a2(k, 0 )  ( - ( e2 /e3 )  k, k3) %(k, o)>, 

where 

with similar expressions for a, and a3. These may be summarized as 

X2(t) = (k; /e;+ + kz/e!),  

a,(k,t) = Aii(k, t )a j (k ,  0). 
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As the turbulence is homogeneous, the power spectrum 

Oij(k, t )  6(k-k’) = a$(k,t)aj(k’,t), 

489 

where the asterisk denotes the complex conjugate. In  particular, it is assumed that, 
in unstrained conditions, the turbulence is isotropic, with 

O,j(k, 0) = (ki kj  - k26ij) $ (k ) ,  

and that, a t  this initial instant, the wavenumber vectors are the same in both co- 
ordinate systems. On the basis of these assumptions space-time correlations may be 
derived and the velocity correlation in the frame moving along mean-flow streamlines 
is 

where (8,q5) are polar co-ordinates of k, i.e. k,  = k sin 8 cos 4, k ,  = ksin 6 sin q5 and 
k3 = k cos 8, and the operators Aij(k, t) depend only on (8,#, t )  and not on k. This 
result is independent of the initial form of the energy spectrum, (u120)i being the initial 
intensity. These integrals have been evaluated by numerical integration, and intens- 
ities and diffusive spreads derived. The expression for the variance of particle position 
may be rewritten as 

. ,  

B~~ (8, 4, G) = Joz ’M~i j (o ,  $, t = .,/u1) exp { - ( ~ x )  - ~(x , ) )}  d ( z , / ~ ,  

with e2 and e3 given as functions of position x/M. 

factor I ,  = 2.560- mentioned in 5 4. 
The values of lo plotted in figure 10 were computed from (A 20), using the scaling 
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